### Entity Resolution with Active Learning

#### Jingyu Shao

School of Computing Australian National University

May 24, 2021



### \* Introduction and challenges

- \* How to build a set of "optimal" blocking schemes efficiently?
- \* How to design an AL approach under various data distributions?
- \* How to alleviate the overfitting problem for powerful models?
- \* Conclusion



The process of identifying records which represent the same real-world entity from one or more datasets



### Blocking





Reduce the number of record pairs to be compared by grouping potentially matched records into the same block. E.g., millions of pairs in real life.

### Blocking





Reduce the number of record pairs to be compared by grouping potentially matched records into the same block. E.g., millions of pairs in real life.

Without blocking: 7 records with 21 pairs



With blocking: 7 records with 5 pairs





#### Using blocking schemes: (Which is better?)





#### Using blocking schemes: (Which is better?)



How to learn a good blocking scheme?

- Millions of record pairs, with highly imbalanced labels hard to obtain.
- The search space for all possible blocking schemes is large.

### Classification





A classifier is used to categorize samples into matches and non-matches.





A classifier is used to categorize samples into matches and non-matches.

Considering we have samples within a block, and they are mapped into a feature space shown as below:



The red and blue points refer to matches and non-matches



Sufficient number of samples are necessary for training, but obtaining their labels for learning is costly.



Accuracy: 90%

\* Red: 6/20

\* Blue: 6/20



#### Initialization: random seed samples Select the most uncertain instances



Accuracy: 90% \* Red: 4/20 \* Blue: 4/20 1

<sup>1</sup>B. Settles, Active learning literature survey, 2010



### 4 more samples are labeled



Accuracy: 97.5%



# Challenges



The distribution of matches and non-matches is highly imbalanced. A small number of samples are labeled.

- Various strategies: different datasets





Sample distribution

Sample distribution

# Challenges



The distribution of matches and non-matches is highly imbalanced. A small number of samples are labeled.

- Various strategies: different datasets
- Cold start: imbalanced ER data distribution



# Challenges



The distribution of matches and non-matches is highly imbalanced. A small number of samples are labeled.

- Various strategies: different datasets
- Cold start: imbalanced ER data distribution
- Overfitting: powerful models



Sample distribution



- \* Introduction and challenges
- \* How to build a set of "optimal" blocking schemes efficiently?
  - Active scheme learning and scheme skyline learning <sup>12</sup>
- \* How to design an AL approach under various data distributions?
- \* How to alleviate the overfitting problem for powerful models?
- \* Conclusion

<sup>&</sup>lt;sup>1</sup>J. Shao and Q. Wang. Active Blocking Scheme Learning for Entity Resolution. PAKDD'18.

<sup>&</sup>lt;sup>2</sup>J. Shao, Q. Wang and Y. Lin. Skyblocking for Entity Resolution. IS'19.



Disjunction of conjunction of attributes

Blocking schemes are built from:





Class Imbalance Problem:

Large Search Space  $2^{\binom{n}{\lfloor n/2 \rfloor}}$ :



Sample distribution





Our observation: similar attribute values - > matches

How to select attributes to build schemes? Some values are frequent but useless, e.g. year. Balanced samples for all possible attributes and select!

Balance Rate  $\gamma(s, X)$  describes the balance degree for a given scheme s under a sample set X



Our observation: similar attribute values - > matches

How to select attributes to build schemes? Some values are frequent but useless, e.g. year. Balanced samples for all possible attributes and select!

Balance Rate  $\gamma(s, X)$  describes the balance degree for a given scheme s under a sample set X

E.g. if 
$$s = A \land B$$
,  $X = \{x_1, x_2\}$ , then  $s(x_1) = true$ ,  $s(x_2) = false$   
Thus  $\gamma(s, X) = \frac{1(\#true) - 1(\#false)}{2} = 0$  (balanced):

|                       | A | В | С | D |
|-----------------------|---|---|---|---|
| <i>x</i> <sub>1</sub> | 1 | 1 | 0 | 1 |
| <i>x</i> <sub>2</sub> | 0 | 1 | 0 | 1 |

# Active Sampling



Select samples to minimize the balance rate for a given set of schemes:

minimize 
$$\sum_{s_i \in S} \gamma(s_i, X)^2$$



# Active Branching



Reduce the search space by extending "proper" schemes w.r.t. a specific criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

 $\wedge$  reduce block size, increase PQ

 $\lor$  increase block size, increase PC

# Active Branching



Reduce the search space by extending "proper" schemes w.r.t. a specific criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

- $\wedge$  reduce block size, increase PQ
- $\lor$  increase block size, increase PC

Example: to learn a blocking scheme with two attributes:  $\langle name \rangle$ ,  $\langle color \rangle$ , w.r.t. PQ = 0.8





#### Possible Blocks





Skyline queries under a set of blocking schemes: Map schemes into a measure space

| Blocking              | PC   | PQ   |  |
|-----------------------|------|------|--|
| scheme                |      |      |  |
| <i>s</i> <sub>1</sub> | 0.13 | 0.76 |  |
| <i>s</i> <sub>2</sub> | 0.31 | 0.99 |  |
| <i>s</i> 3            | 0.58 | 0.76 |  |
| <i>s</i> 4            | 0.84 | 0.40 |  |
| <i>S</i> 5            | 0.86 | 0.50 |  |
|                       |      |      |  |





Skyline queries under a set of blocking schemes: Dominated VS Dominating schemes

| Blocking<br>scheme    | PC   | PQ   |
|-----------------------|------|------|
| <i>s</i> <sub>1</sub> | 0.13 | 0.76 |
| <i>s</i> <sub>2</sub> | 0.31 | 0.99 |
| <i>s</i> 3            | 0.58 | 0.76 |
| <i>s</i> 4            | 0.84 | 0.40 |
| <i>S</i> 5            | 0.86 | 0.50 |
|                       |      |      |





- Learn "optimal" schemes w.r.t. different thresholds



- Merge them for skyline




Observation: some are redundant under different thresholds: e.g.  $s_{3-5}$ 

New threshold: PC/PQ value of current scheme plus a threshold interval



# Progressive Skyline Learning (Pro-Sky)



Unnecessary label cost in Adap-Sky: samples are independently selected and may be duplicated under different thresholds.

Pro-Sky with scheme extension:



### (a) 1-ary Scheme Skyline

# Progressive Skyline Learning (Pro-Sky)



Unnecessary label cost in Adap-Sky: samples are independently selected and may be duplicated under different thresholds.

Pro-Sky with scheme extension:



### (b) 2-ary Scheme Skyline

# Progressive Skyline Learning (Pro-Sky)



Unnecessary label cost in Adap-Sky: samples are independently selected and may be duplicated under different thresholds.

Pro-Sky with scheme extension:





#### Datasets

| Dataset        | # of Attributes | # of Records    | <b>Class Imbalance Ratio</b> |
|----------------|-----------------|-----------------|------------------------------|
| Cora           | 4               | 1,295           | 1:49                         |
| DBLP - ACM     | 4               | 2,616/2,294     | 1:1,117                      |
| DBLP - Scholar | 4               | 2,616:64,263    | 1:31,440                     |
| NCVR           | 18              | 267,716/278,262 | 1:2,692                      |

#### Baselines











43 / 72







- \* Introduction and challenges
- \* How to build a set of "optimal" blocking schemes efficiently?
- \* How to design an AL approach under various data distributions?
   Learning based active learning for ER <sup>1</sup>
- \* How to alleviate the overfitting problem for powerful models?
- \* Conclusion

<sup>&</sup>lt;sup>1</sup>J. Shao, Q. Wang and F. Liu. Learning To Sample: an Active Learning Framework. ICDM'19.



#### To build an active learning framework:





#### Challenges

- \* No one-fit-all: the "best" active learning strategy varies due to different datasets and machine learning models.
- \* Cold start problem: occurs under limited highly imbalanced samples.



#### Challenges

- \* No one-fit-all: the "best" active learning strategy varies due to different datasets and machine learning models.
- \* Cold start problem: occurs under limited highly imbalanced samples.

#### Solution

- Dynamical estimation of model performance (learning-based)
- Uncertainty and diversity of samples



Uncertainty sampling: function-based uncertainty measures

Diversity sampling: considering sample distribution (feature values)



### Framework: Learning to Sample (LTS)



Two models dynamically learn from each other in iterations for performance improvement.



### Boosting Model F





The boosting model F is a set of classifiers  $\langle f^{(1)}, \ldots, f^{(n)} \rangle$ .

A classifier  $f^{(t)} \in F$  at the *t*-th iteration is trained by minimizing:

# Boosting Model F





The boosting model F is a set of classifiers  $\langle f^{(1)}, \ldots, f^{(n)} \rangle$ .

A classifier  $f^{(t)} \in F$  at the *t*-th iteration is trained by minimizing:

$$\sum_{(x_i,y_i)\in \mathcal{T}^{(t)}} \ell_1(\hat{y}_i^{(t-1)} + f^{(t)}(x_i), y_i) + \Omega_1(f^{(t)})$$

where:

-  $T^{(t)}$ : training set; -  $\hat{y}_i^{(t-1)} = \sum_{k=1}^{t-1} f^{(k)}(x_i)$ : predicted label of  $x_i$ ; -  $\ell_1$ : a differentiable loss function; -  $\Omega_1(f^{(t)})$ : the complexity penalty for  $f^{(t)}$ .

# Sampling Model G





The sampling model G actively selects a set  $\Delta^{(t)}$  of uncertainty and diversity samples at the *t*-th iteration by:

# Sampling Model G





The sampling model G actively selects a set  $\Delta^{(t)}$  of uncertainty and diversity samples at the *t*-th iteration by:

maximize 
$$\sum_{i=1}^{k} v_i g^{(t)}(x_i) + \alpha \times \Gamma(v)$$
  
subject to  $||v||_1 = |\Delta^{(t)}|$ 

where  $v = (v_1, ..., v_k)^T \in \{0, 1\}^k$ , k is the number of samples, and  $\alpha$  is a parameter.

- A regressor  $g^{(t)}(x_i)$  for uncertainty sampling
- A regularizer  $\Gamma(v)$  for diversity sampling.

### Strategy: Uncertainty Sampling





A regressor is trained to predict the uncertainty of samples by minimizing:

Uncertainty Sampling

$$\sum_{\substack{x_i, z_i^{(t)}) \in A^{(t)}}} w_i^{(t)} \ell_2(g^{(t)}(x_i), z_i^{(t)}) + \Omega_2(g^{(t)})$$

#### where:

- $A^{(t)} = \{(x_i, z_i^{(t)}) | x_i \in T^{(t)}, z_i^{(t)} \in [0, 1]\}$ : uncertainty sample set; -  $z_i^{(t)}$ : the uncertainty of  $x_i$ ;
- $w_i^{(t)}$ : the weights of  $x_i$ ;
- $\ell_2$ : a differentiable loss function;

()

-  $\Omega_2(g^{(t)})$ : the complexity penalty for  $g^{(t)}$ .





The diversity  $\Gamma(v)$  is defined using a  $l_{2,1}$ -norm function:

$$\Gamma(\mathbf{v}) = ||\mathbf{v}||_{2,1} = \sum_{j=1}^{b} ||\mathbf{v}_j||_2$$

#### where:

- The sample space v with b groups  $\{v_1, \ldots, v_b\}$ ;
- The vector  $v_i \in \{0,1\}^m$  indicates samples selected in a group;
- Sample size  $m = |X_i^{(t)}|$  in a group.

### Results under Different Label Budgets



| Determ           | Label Budget $\zeta$ | CADT  | XG    | XG+RS | XG + US      | XG+LTS       | XG + DS             |
|------------------|----------------------|-------|-------|-------|--------------|--------------|---------------------|
| Dataset          | (% of  X )           |       |       |       | $\alpha = 0$ | $\alpha = 1$ | $\alpha \to \infty$ |
| Cora             | 0.01                 | 0     | 0     | 0     | 0            | 0.857        | 0.878               |
|                  | 0.05                 | 0.741 | 0.763 | 0.750 | 0.827        | 0.864        | 0.885               |
|                  | 0.1                  | 0.788 | 0.796 | 0.787 | 0.823        | 0.862        | 0.886               |
|                  | 0.5                  | 0.848 | 0.835 | 0.835 | 0.873        | 0.900        | 0.893               |
|                  | 1                    | 0.868 | 0.878 | 0.880 | 0.870        | 0.902        | 0.894               |
|                  | 5                    | 0.878 | 0.897 | 0.892 | 0.907        | 0.915        | 0.898               |
| NCVoter          | 0.01                 | 0     | 0     | 0     | 0            | 0.324        | 0.875               |
|                  | 0.05                 | 0     | 0     | 0     | 0            | 0.954        | 0.991               |
|                  | 0.1                  | 0     | 0     | 0     | 0            | 0.994        | 0.993               |
|                  | 0.5                  | 0     | 0     | 0     | 0            | 0.994        | 0.991               |
|                  | 1                    | 0.334 | 0.379 | 0.398 | 0            | 0.993        | 0.994               |
|                  | 5                    | 0.993 | 0.993 | 0.994 | 0.993        | 0.997        | 0.993               |
|                  | 0.1                  | 0     | 0     | 0     | 0            | 0            | 0.397               |
|                  | 0.5                  | 0     | 0     | 0     | 0            | 0.702        | 0.632               |
| DBLP-<br>ACM     | 1                    | 0.348 | 0.347 | 0.279 | 0            | 0.878        | 0.721 3             |
|                  | 2                    | 0.599 | 0.767 | 0.680 | 0.403        | 0.884        | 0.783               |
|                  | 5                    | 0.870 | 0.850 | 0.803 | 0.874        | 0.931        | 0.833               |
|                  | 10                   | 0.903 | 0.911 | 0.890 | 0.926        | 0.981        | 0.899               |
| DBLP-<br>Scholar | 0.1                  | 0     | 0     | 0     | 0            | 0.723        | 0.731               |
|                  | 0.5                  | 0.378 | 0.54  | 0.498 | 0.555        | 0.773        | 0.780               |
|                  | 1                    | 0.562 | 0.669 | 0.659 | 0.738        | 0.804        | 0.792               |
|                  | 2                    | 0.772 | 0.806 | 0.771 | 0.807        | 0.815        | 0.801               |
|                  | 5                    | 0.773 | 0.822 | 0.803 | 0.836        | 0.836        | 0.818 8             |
|                  | 10                   | 0.808 | 0.835 | 0.830 | 0.865        | 0.851        | 0.829               |



- \* Introduction and challenges
- \* How to build a set of "optimal" blocking schemes efficiently?
- \* How to design an AL approach under various data distributions?
- \* How to alleviate the overfitting problem for powerful models?
  - A generative model with adversarial nets<sup>1</sup>
- \* Conclusion

<sup>&</sup>lt;sup>1</sup>J. Shao, Q. Wang, A. Wijesinghe and E. Rahm. ErGAN: Generative Adversarial Networks for Entity Resolution. ICDM'20.



#### Challenges

- \* The imbalanced class problem: ER tasks
- \* The overfitting problem: powerful models



#### Challenges

- \* The imbalanced class problem: ER tasks
- \* The overfitting problem: powerful models

### Solution

- Label generator G: only have access to unlabeled samples, consider diverse samples
- Discriminator *D*: provide feedback to train *G*, limited labels used with propagation

### Framework Overview









Generate pseudo labels for unlabeled samples

Learn a conditional distribution  $p_g(Y|X^U) \approx p(Y|X^U)$ 





Generate pseudo labels for unlabeled samples Learn a conditional distribution  $p_g(Y|X^U) \approx p(Y|X^U)$ 



A minibatch of m samples is selected from  $X^U$  according to the following objective function:

ximize 
$$||\mathbf{v}||_{2,1}$$
 s.t.  $\sum_{i,j} v_i^j = m$ 



G updates its parameters according to:

$$\mathcal{L}_{G} = \min_{G} \quad \mathbb{E}_{x \sim p(X_{i}^{U})}[\log(1 - D(x, G(x)))] \tag{1}$$

where:

- $G(x_i)$  is the pseudo label of  $x_i$  generated by G;
- $(x_i, G(x_i))$  is a pseudo labeled sample sent to the discriminator D;
- D(x, G(x)) is the feedback from the discriminator D.

### Discriminator D





Distinguish samples with pseudo labels from samples with real labels

Learn a joint distribution p(X, Y)

### Discriminator D





Distinguish samples with pseudo labels from samples with real labels Learn a joint distribution p(X, Y)

The objective function of D at the t-th iteration of propagation is:

$$\mathcal{L}_{D} = \max_{D} \quad \mathbb{E}_{x \sim p(X_{i}^{U})} \log[(1 - D(x, G(x)))] \\ + \lambda \mathbb{E}_{(x, y) \sim (X^{*}, Y)^{t}} \log[D(x, y)]$$
(2)

where:

-  $\lambda$  refers to a weighted term. -  $(X^*, Y)^t$  refers to the labeled samples in t-th iteration.





The propagation module selects a minibatch of  $|\Delta X^t|$  high-quality pseudo labeled samples for training *D*:

$$\underset{\Delta X^{t} \subseteq X^{t}}{\operatorname{argmax}} \sum_{x \in \Delta X^{t}} D(x, G(x))$$



- \* Unsupervised: Two-Steps and Iterative Term-Entity Ranking and CliqueRank (ITER-CR).
- \* Semi-supervised: Semi-supervised Boosted Classifier (SBC).
- \* Fully supervised: Magellan and eXtreme Gradient boosting (XGboost).
- \* Deep Learning based: DeepMatcher (DM) and Deep Transfer Active Learning (DTAL).
- \* Ablation Study: **ErGAN+WE**, **ErGAN-D**, **ErGAN-P**, and **ErNN**.



|          | Datasets                    |                             |                             |         |  |  |  |
|----------|-----------------------------|-----------------------------|-----------------------------|---------|--|--|--|
| Method   | Coro                        | DBLP-                       | DBLP-                       | NCVoter |  |  |  |
|          | Cora                        | ACM                         | Scholar                     |         |  |  |  |
| 2S       | 62.69                       | 91.43                       | 68.78                       | 98.96   |  |  |  |
| ITER-CR* | 89.00                       | -                           | -                           | -       |  |  |  |
| SBC      | 85.71                       | 97.09                       | 85.47                       | 99.78   |  |  |  |
| SVM      | 88.95                       | 97.19                       | 85.71                       | 98.48   |  |  |  |
| LR       | 80.25                       | 95.56                       | 83.84                       | 99.37   |  |  |  |
| XGBoost  | 91.34                       | 97.20                       | 86.63                       | 100     |  |  |  |
| ErGAN    | 93.03                       | 98.23                       | 88.32                       | 100     |  |  |  |
| DM       | 98.58                       | 98.29                       | 94.68                       | 100     |  |  |  |
| DTAL*    | $98.68_{\pm 0.26}$          | $98.45_{\pm0.22}$           | $92.94_{\pm 0.47}$          | -       |  |  |  |
| ERGAN+WE | $\textbf{98.72}_{\pm 0.15}$ | $\textbf{98.51}_{\pm 0.23}$ | $\textbf{94.73}_{\pm 0.35}$ | 100     |  |  |  |



| Datasets | Cora         |       |       |       | DBLP-ACM |       |       |       |
|----------|--------------|-------|-------|-------|----------|-------|-------|-------|
|          | 0.1%         | 1%    | 20%   | 60%   | 0.1%     | 1%    | 20%   | 60%   |
| ErNN     | 84.46        | 90.67 | 91.43 | 92.78 | 88.05    | 95.68 | 98.20 | 98.22 |
| ErGAN-D  | 79.87        | 85.14 | 91.27 | 92.97 | 0        | 93.30 | 97.16 | 98.21 |
| ErGAN-P  | 85.18        | 90.76 | 91.42 | 93.03 | 92.67    | 95.96 | 98.21 | 98.23 |
| ErGAN    | 87.45        | 91.07 | 91.54 | 93.03 | 96.89    | 96.93 | 98.22 | 98.23 |
| Datasets | DBLP-Scholar |       |       |       | NCVoter  |       |       |       |
|          | 0.1%         | 1%    | 20%   | 60%   | 0.1%     | 1%    | 20%   | 60%   |
| ErNN     | 82.76        | 83.17 | 86.71 | 87.73 | 99.39    | 100   | 100   | 100   |
| ErGAN-D  | 0            | 78.85 | 83.43 | 88.29 | 0        | 99.58 | 100   | 100   |
| ErGAN-P  | 83.43        | 85.34 | 86.55 | 88.32 | 99.39    | 99.79 | 100   | 100   |
| ErGAN    | 84.23        | 85.85 | 86.86 | 88.32 | 99.45    | 100   | 100   | 100   |



In summary, we have proposed four approaches for ER:

- \* ASL: an active scheme learning approach
- \* Skyblocking: scheme skyline learning under different blocking criteria
- \* LST: A learning-based active learning framework
- \* ERGAN: a generative model with adversarial nets

# Thank You!

# Q & A

Email: Jingyu.shao@anu.edu.au