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Agenda

* Introduction and challenges

* How to build a set of “optimal” blocking schemes efficiently?

* How to design an AL approach under various data distributions?

* How to alleviate the overfitting problem for powerful models?

* Conclusion
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Entity Resolution

The process of identifying records which represent the same
real-world entity from one or more datasets
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Blocking

Reduce the number of record pairs to be
compared by grouping potentially matched
records into the same block.
E.g., millions of pairs in real life.
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Blocking Schemes

Using blocking schemes: (Which is better?)

How to learn a good blocking scheme?

– Millions of record pairs, with highly imbalanced labels hard to obtain.

– The search space for all possible blocking schemes is large.
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Classification

A classifier is used to categorize samples into
matches and non-matches.

Considering we have samples within a block, and they are mapped into a
feature space shown as below:

The red and blue points refer to matches and non-matches
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Training a Classifier

Sufficient number of samples are necessary for training, but obtaining
their labels for learning is costly.

Accuracy: 90% * Red: 6/20 * Blue: 6/20
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Active Learning 1

Initialization: random seed samples

Select the most uncertain instances

Accuracy: 90% * Red: 4/20 * Blue: 4/20 1

1B. Settles, Active learning literature survey, 2010
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Active Learning

4 more samples are labeled

Accuracy: 97.5% * Red: 6/20 * Blue: 6/20
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Challenges

The distribution of matches and non-matches is highly imbalanced.

A small number of samples are labeled.

– Various strategies: different datasets
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Agenda

* Introduction and challenges

* How to build a set of “optimal” blocking schemes efficiently?

– Active scheme learning and scheme skyline learning 12

* How to design an AL approach under various data distributions?

* How to alleviate the overfitting problem for powerful models?

* Conclusion

1J. Shao and Q. Wang. Active Blocking Scheme Learning for Entity Resolution. PAKDD’18.
2J. Shao, Q. Wang and Y. Lin. Skyblocking for Entity Resolution. IS’19.
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Schemes for Blocking

Disjunction of conjunction of attributes

Blocking schemes are built from:
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Challenges for Scheme Learning

Class Imbalance Problem: Large Search Space 2( n
[n/2]):
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Balanced Sample Selection

Our observation: similar attribute values − > matches

How to select attributes to build schemes?
Some values are frequent but useless, e.g. year.
Balanced samples for all possible attributes and select!

Balance Rate γ(s,X ) describes the balance degree for a given scheme s
under a sample set X

E.g. if s = A ∧ B, X = {x1, x2}, then s(x1) = true, s(x2) = false

Thus γ(s,X ) = 1(#true)−1(#false)
2 = 0 (balanced):

A B C D

x1 1 1 0 1
x2 0 1 0 1
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Active Sampling

Select samples to minimize the balance rate for a given set of schemes:

minimize
∑
si∈S

γ(si ,X )2
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Active Branching

Reduce the search space by extending “proper” schemes w.r.t. a specific
criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

∧ reduce block size, increase PQ

∨ increase block size, increase PC

Example: to learn a blocking scheme with two attributes: 〈name〉, 〈color〉,
w.r.t. PQ = 0.8

22 / 72



Active Branching

Reduce the search space by extending “proper” schemes w.r.t. a specific
criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

∧ reduce block size, increase PQ

∨ increase block size, increase PC

Example: to learn a blocking scheme with two attributes: 〈name〉, 〈color〉,
w.r.t. PQ = 0.8

23 / 72



Limitation: Trade-offs

– The higher, the
better (PC and PQ
values)

– More records in one
block (high PC
threshold)

– Less records in one
block (high PQ
threshold
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Skyblocking Approach

Skyline queries under a set of blocking schemes:

Map schemes into a measure space

Blocking
PC PQ

scheme

s1 0.13 0.76

s2 0.31 0.99

s3 0.58 0.76

s4 0.84 0.40

s5 0.86 0.50

... ... ... 0 0.2 0.4 0.6 0.8 1.0
PC

0

0.2

0.4

0.6

0.8

1.0

PQ

Scheme Skyline

25 / 72



Skyblocking Approach

Skyline queries under a set of blocking schemes:

Dominated VS Dominating schemes
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- Learn “optimal” schemes w.r.t. different thresholds

0 1.00

1.0 s1

0.1

(a) Parallel Step

0 1.0
PC

0

1.0

PQ

s1

(b) Merging Step
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1

0 1.00

1.0 s2

0.2

(a) Parallel Step

0 1.0
PC

0

1.0

PQ

s1 s2

(b) Merging Step
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1
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A näıve way to learn scheme skyline:
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A näıve way to learn scheme skyline:
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A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1
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A näıve way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. ∆ = 0.1
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Näıve Skyline Learning (Näıve-Sky)

A näıve way to learn scheme skyline:

- Merge them for skyline
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Adaptive Skyline Learning (Adap-Sky)

Observation: some are redundant under different thresholds: e.g. s3−5

New threshold: PC/PQ value of current scheme plus a threshold interval
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Progressive Skyline Learning (Pro-Sky)

Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

0 0.5 1.0
PC

0

0.5

1.0
(a) 1-ary Scheme Skyline

38 / 72



Progressive Skyline Learning (Pro-Sky)

Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

0 0.5 1.0
PC

0

0.5

1.0
(b) 2-ary Scheme Skyline
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Progressive Skyline Learning (Pro-Sky)

Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

0 0.5 1.0
PC

0

0.5

1.0
(c) 3+-ary Scheme Skyline
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Experimental Setup

Datasets

Dataset # of Attributes # of Records Class Imbalance Ratio
Cora 4 1,295 1:49
DBLP - ACM 4 2,616/2,294 1:1,117
DBLP - Scholar 4 2,616:64,263 1:31,440
NCVR 18 267,716/278,262 1:2,692

Baselines
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Scheme Skylines (Pro-Sky) in Experiments
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Scheme Skylines (Pro-Sky) in Experiments
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Scheme Skylines (Pro-Sky) in Experiments

44 / 72



Agenda

* Introduction and challenges

* How to build a set of “optimal” blocking schemes efficiently?

* How to design an AL approach under various data distributions?

– Learning based active learning for ER 1

* How to alleviate the overfitting problem for powerful models?

* Conclusion

1J. Shao, Q. Wang and F. Liu. Learning To Sample: an Active Learning Framework.
ICDM’19.
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Objective

To build an active learning framework:

Uncertainty Sampling 

Random Sampling 
(active) 

Random Sampling 
(non-active) 

Pe
rf

o
rm

an
ce

 

Cold Start 
# of labels 

Converge Point 
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Challenges in ER with Active Learning

Challenges

* No one-fit-all: the “best” active learning strategy varies due to
different datasets and machine learning models.

* Cold start problem: occurs under limited highly imbalanced samples.

Solution

– Dynamical estimation of model performance (learning-based)

– Uncertainty and diversity of samples
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Sample Uncertainty and Diversity

Uncertainty sampling: function-based uncertainty measures

Diversity sampling: considering sample distribution (feature values)
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Framework: Learning to Sample (LTS)

Two models dynamically learn from each other in iterations for
performance improvement.
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Boosting Model F

The boosting model F is a set of classi-
fiers 〈f (1), . . . , f (n)〉.

A classifier f (t) ∈ F at the t-th iteration
is trained by minimizing:

∑
(xi ,yi )∈T (t)

`1

(
ŷ

(t−1)
i + f (t)(xi ), yi

)
+ Ω1(f (t))

where:

– T (t): training set;

– ŷ
(t−1)
i =

∑t−1
k=1 f

(k)(xi ): predicted label of xi ;

– `1: a differentiable loss function;

– Ω1(f (t)): the complexity penalty for f (t).
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Sampling Model G

The sampling model G actively selects
a set ∆(t) of uncertainty and diversity
samples at the t-th iteration by:

maximize
k∑

i=1

vig
(t)(xi ) + α× Γ(v)

subject to ||v||1 = |∆(t)|

where v = (v1, ..., vk)T ∈ {0, 1}k , k is the number of samples, and α is a
parameter.

– A regressor g (t)(xi ) for uncertainty sampling

– A regularizer Γ(v) for diversity sampling.
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Strategy: Uncertainty Sampling

A regressor is trained to predict the uncer-
tainty of samples by minimizing:∑

(xi ,z
(t)
i )∈A(t)

w
(t)
i `2(g (t)(xi ), z

(t)
i ) + Ω2(g (t))

where:

– A(t) = {(xi , z
(t)
i )|xi ∈ T (t), z

(t)
i ∈ [0, 1]}: uncertainty sample set;

– z
(t)
i : the uncertainty of xi ;

– w
(t)
i : the weights of xi ;

– `2: a differentiable loss function;

– Ω2(g (t)): the complexity penalty for g (t).
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Strategy: Diversity Sampling

The diversity Γ(v) is defined using a l2,1-norm
function:

Γ(v) = ||v||2,1 =
b∑

j=1

||vj ||2

where:

– The sample space v with b groups {v1, . . . , vb};
– The vector vj ∈ {0, 1}m indicates samples selected in a group;

– Sample size m = |X (t)
j | in a group.
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Results under Different Label Budgets

Dataset
Label Budget ζ

CART XG XG+RS
XG + US XG+LTS XG + DS

(% of |X |) α = 0 α = 1 α→∞

Cora

0.01 0 0 0 0 0.857 0.878
0.05 0.741 0.763 0.750 0.827 0.864 0.885
0.1 0.788 0.796 0.787 0.823 0.862 0.886
0.5 0.848 0.835 0.835 0.873 0.900 0.893
1 0.868 0.878 0.880 0.870 0.902 0.894
5 0.878 0.897 0.892 0.907 0.915 0.898

NCVoter

0.01 0 0 0 0 0.324 0.875
0.05 0 0 0 0 0.954 0.991
0.1 0 0 0 0 0.994 0.993
0.5 0 0 0 0 0.994 0.991
1 0.334 0.379 0.398 0 0.993 0.994
5 0.993 0.993 0.994 0.993 0.997 0.993

0.1 0 0 0 0 0 0.397
0.5 0 0 0 0 0.702 0.632

DBLP- 1 0.348 0.347 0.279 0 0.878 0.721 3
ACM 2 0.599 0.767 0.680 0.403 0.884 0.783

5 0.870 0.850 0.803 0.874 0.931 0.833
10 0.903 0.911 0.890 0.926 0.981 0.899

0.1 0 0 0 0 0.723 0.731
0.5 0.378 0.54 0.498 0.555 0.773 0.780

DBLP- 1 0.562 0.669 0.659 0.738 0.804 0.792
Scholar 2 0.772 0.806 0.771 0.807 0.815 0.801

5 0.773 0.822 0.803 0.836 0.836 0.818 8
10 0.808 0.835 0.830 0.865 0.851 0.829
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Agenda

* Introduction and challenges

* How to build a set of “optimal” blocking schemes efficiently?

* How to design an AL approach under various data distributions?

* How to alleviate the overfitting problem for powerful models?

– A generative model with adversarial nets1

* Conclusion

1J. Shao, Q. Wang, A. Wijesinghe and E. Rahm. ErGAN: Generative Adversarial Networks
for Entity Resolution. ICDM’20.
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Challenges in ER with Limited Samples

Challenges

* The imbalanced class problem: ER tasks

* The overfitting problem: powerful models

Solution

– Label generator G : only have access to unlabeled samples, consider
diverse samples

– Discriminator D: provide feedback to train G , limited labels used with
propagation
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Framework Overview

Unlabeled Samples 
(𝑋𝑋𝑈𝑈)

𝑥𝑥,𝑦𝑦

Label Generator

𝑥𝑥,𝐺𝐺 𝑥𝑥

Discriminator

Back-Propagation

Labeled Samples
(𝑋𝑋𝐿𝐿,𝑌𝑌)

G

Propagation 
Module

D
Diversity 
Module 𝐷𝐷(𝑥𝑥,𝐺𝐺 𝑥𝑥 )
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Label Generator G and Diversity Module

Generate pseudo labels for unla-
beled samples

Learn a conditional distribution
pg (Y |XU) ≈ p(Y |XU)

A minibatch of m samples is selected from XU

according to the following objective function:

maximize ||v||2,1 s.t.
∑
i ,j

v ji = m

62 / 72



Label Generator G and Diversity Module

Generate pseudo labels for unla-
beled samples

Learn a conditional distribution
pg (Y |XU) ≈ p(Y |XU)

A minibatch of m samples is selected from XU

according to the following objective function:

maximize ||v||2,1 s.t.
∑
i ,j

v ji = m

63 / 72



Objective Function of G

G updates its parameters according to:

LG = min
G

Ex∼p(XU
i )[log(1− D(x ,G (x)))] (1)

where:

– G (xi ) is the pseudo label of xi generated by G ;

– (xi ,G (xi )) is a pseudo labeled sample sent to the discriminator
D;

– D(x ,G (x)) is the feedback from the discriminator D.
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Discriminator D

Distinguish samples with pseudo la-
bels from samples with real labels

Learn a joint distribution p(X ,Y )

The objective function of D at the t-th iteration of propagation is:

LD =max
D

Ex∼p(XU
i )log[(1− D(x ,G (x)))]

+ λE(x ,y)∼(X∗,Y )t log[D(x , y)]
(2)

where:

– λ refers to a weighted term.
– (X ∗,Y )t refers to the labeled samples in t-th iteration.

65 / 72



Discriminator D

Distinguish samples with pseudo la-
bels from samples with real labels

Learn a joint distribution p(X ,Y )

The objective function of D at the t-th iteration of propagation is:

LD =max
D

Ex∼p(XU
i )log[(1− D(x ,G (x)))]

+ λE(x ,y)∼(X∗,Y )t log[D(x , y)]
(2)

where:

– λ refers to a weighted term.
– (X ∗,Y )t refers to the labeled samples in t-th iteration.

66 / 72



Propagation Module

(a) Seed Samples (b) 1-st Iteration (c) 2-nd Iteration

x
c

x
c

x
c

x
c x

c

x
c

The propagation module selects a minibatch of |∆X t | high-quality pseudo
labeled samples for training D:

argmax
∆X t⊆X t

∑
x∈∆X t

D(x ,G (x))
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Experimental Setup: Baselines

* Unsupervised: Two-Steps and Iterative Term-Entity Ranking and
CliqueRank (ITER-CR).

* Semi-supervised: Semi-supervised Boosted Classifier (SBC).

* Fully supervised: Magellan and eXtreme Gradient boosting
(XGboost).

* Deep Learning based: DeepMatcher (DM) and Deep Transfer
Active Learning (DTAL).

* Ablation Study: ErGAN+WE, ErGAN-D, ErGAN-P, and ErNN.
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Results: 60% Training

Method
Datasets

Cora
DBLP- DBLP-

NCVoter
ACM Scholar

2S 62.69 91.43 68.78 98.96
ITER-CR* 89.00 – – –
SBC 85.71 97.09 85.47 99.78
SVM 88.95 97.19 85.71 98.48
LR 80.25 95.56 83.84 99.37
XGBoost 91.34 97.20 86.63 100
ErGAN 93.03 98.23 88.32 100

DM 98.58 98.29 94.68 100
DTAL* 98.68±0.26 98.45±0.22 92.94±0.47 –
ErGAN+WE 98.72±0.15 98.51±0.23 94.73±0.35 100
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Results: Ablation Study

Datasets
Cora DBLP-ACM

0.1% 1% 20% 60% 0.1% 1% 20% 60%

ErNN 84.46 90.67 91.43 92.78 88.05 95.68 98.20 98.22
ErGAN-D 79.87 85.14 91.27 92.97 0 93.30 97.16 98.21
ErGAN-P 85.18 90.76 91.42 93.03 92.67 95.96 98.21 98.23
ErGAN 87.45 91.07 91.54 93.03 96.89 96.93 98.22 98.23

Datasets
DBLP-Scholar NCVoter

0.1% 1% 20% 60% 0.1% 1% 20% 60%

ErNN 82.76 83.17 86.71 87.73 99.39 100 100 100
ErGAN-D 0 78.85 83.43 88.29 0 99.58 100 100
ErGAN-P 83.43 85.34 86.55 88.32 99.39 99.79 100 100
ErGAN 84.23 85.85 86.86 88.32 99.45 100 100 100
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Conclusion

In summary, we have proposed four approaches for ER:

* ASL: an active scheme learning approach

* Skyblocking: scheme skyline learning under different blocking criteria

* LST: A learning-based active learning framework

* ERGAN: a generative model with adversarial nets
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Thank You!

Q & A

Email: Jingyu.shao@anu.edu.au
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