
ErGAN: Generative Adversarial Networks for Entity
Resolution

Jingyu Shao 1, Qing Wang 1, Asiri Wijesinghe 1, and Erhard Rahm 2

1Research School of Computer Science
Australian National University

2Database Group, University of Leipzig

November 20, 2020

Acknowledgement: This work was partially funded by the Australian Research Council

(ARC) under Discovery Project DP160101934

1 / 28



Introduction: Challenges in ER

Two main challenges in solving Entity Resolution (ER) tasks:

(b) Samples with limited labels(a) Entire Data Distribution
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The imbalanced class problem:
The number of matches (record pairs referring to the same entity) is far less
than the number of non-matches.

The overfitting problem:
The number of labeled instances is limited and a learning model is powerful
enough to remember all the features of training instances.
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Introduction: GANs

Generative adversarial network (GAN) is a powerful technique for image
generation and natural language processing (NLP).
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Figure: An overview of GANs
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Framework Overview
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Label Generator G
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The label generator G - aims to generates pseudo labels for unlabeled
instances.
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Label Generator G

The goal of the label generator G is to learn a conditional distribution
pg (Y |XU) ≈ p(Y |XU).

where XU refers to all unlabeled instances and Y refers to their labels.

To simulate the conditional distribution p(Y |XU), the label generator
G receives feedback (i.e. gradients) from the discriminator D and is
trained iteratively through backpropagation.
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Diversity Module
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The diversity module enriches the diversity of both labeled and unlabeled
instances during the sampling process.
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Diversity Module

Different from GANs, we consider the diversity of instances in the
minibatch sampling process.

For all instances in X , we have X =
⋃b

i=1 Xi and∧
1≤i 6=j≤b Xi ∩ Xj = ∅.

where Xi refers to subspaces.
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Diversity Module

A minibatch of m instances is selected from XU according to the
following objective function:

maximize ||v||2,1 s.t.
∑
i ,j

v ji = m

Let v = (v1, ..., vb) be a vector corresponding to b subspaces, and
||v||2,1 is a l2,1-norm function, i.e.

||v||2,1 =
∑b

i=1 ||vi ||2 =
∑b

i=1

√∑ni
j=1 v

j
i

2

where:

– vi = (v1
i , . . . , v

ni
i )T ;

– vi ∈ [0, 1]ni ;

– ni = |XU
i |.
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Objective Function of G

G updates its parameters according to the following objective
function:

LG = min
G

Ex∼p(XU
i )[log(1− D(x ,G (x)))] (1)

where:

– G (xi ) is the pseudo label of xi generated by G ;

– xi ,G (xi ) is a pseudo labeled instance sent to the discriminator D;

– D(x ,G (x)) is the feedback from the discriminator D.
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Discriminator D
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The discriminator D - aims to distinguish instances with pseudo labels
from instances with real labels.
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Discriminator D

The goal of D is to distinguish whether a labeled instance (x ,G (x)) is
from the real distribution p(X ,Y )

Given a pair (x ,G (X )) as input, D generates a scalar value in [0, 1] to
indicate the probability that G (x) is the same as the real label y of x .
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Propagation Module
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The propagation module guarantees the selection of high-quality unlabeled
instances for training the discriminator D when the labeled instances are
not sufficient.
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Propagation Module

Different from GANs, the discriminator D in ErGAN is designed to
approximate the true joint distribution p(X ,Y ) progressively through
a propagation module.

The higher score of D(xi ,G (xi )) indicates the higher correctness of
G (xi ) to the real label yi .

A minibatch of γ pseudo labeled instances are propagated according
to the following objective function:

argmax
∆X t⊆X t

∑
x∈∆X t

D(x ,G (x))

where:

– (X t ,G (X t)) denote all pseudo labeled instances at the t-th iteration;

– |∆X t | = γ;
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Propagation Module

Then, this subset of pseudo labeled instances (∆X t , Ŷ ) is propagated
into the set of labeled instances (X ∗,Y )t to train D.
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Figure: An overview of label propagation
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Objective Function of D

The objective function of D at the t-th iteration of propagation is
defined as:

LD =max
D

Ex∼p(XU
i )log[(1− D(x ,G (x)))]

+ λE(x ,y)∼(X∗,Y )t log[D(x , y)]
(2)

where:

– λ refers to a weighted term.
– (X ∗,Y )t refers to the labeled instances in t-th iteration.
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Hyper-parameters in the Algorithm

The number of subspaces b is decided based on the number of
attributes in each dataset.

n is a hyper-parameter referring to the number of iterations for
converging G and D.

Propagation iterations t is decided by the total number XU of
unlabeled instances and the number γ of instances being propagated

in each iteration, i.e. t = d |X
U |
γ e.
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Experimental Setup: Datasets

Dataset
#Attributes #Instances Imbalance #Subspaces

(|A|) (|X |) Rate (b)

Cora 4 837,865 1:49 16
DBLP-

4/4 6,001,104 1:2,698 16
ACM
DBLP-

4/4 168,112,008 1:71,233 16
Scholar
NCVoter 18/18 1,000,000 1:4,202 64
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Experimental Setup: Baselines

Unsupervised methods: Two-Steps and Iterative Term-Entity
Ranking and CliqueRank (ITER-CR)

Semi-supervised methods: Semi-supervised Boosted Classifier
(SBC)

Fully supervised methods: Magellan and eXtreme Gradient
boosting (XGboost)

Deep Learning based methods: DeepMatcher (DM) and Deep
Transfer active learning (DTAL).
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Experimental Setup: Ablation Study

Some variants of ErGAN used in the ablation study:

ErGAN+WE refers to the model of ErGAN augmented with word
embeddings for attribute values.

ErGAN-D refers to a model being obtained by removing the diversity
module from ErGAN

ErGAN-P refers to a model being obtained by removing the
propagation module from ErGAN

ErNN refers to a model whose GANs architecture is replaced by a
single multi-layer perceptron.
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Results: 60% Training

Method
Datasets

Cora
DBLP- DBLP-

NCVoter
ACM Scholar

2S 62.69 91.43 68.78 98.96
ITER-CR* 89.00 – – –
SBC 85.71 97.09 85.47 99.78
SVM 88.95 97.19 85.71 98.48
LR 80.25 95.56 83.84 99.37
XGBoost 91.34 97.20 86.63 100
ErGAN 93.03 98.23 88.32 100

DM 98.58 98.29 94.68 100
DTAL* 98.68±0.26 98.45±0.22 92.94±0.47 –
ErGAN+WE 98.72±0.15 98.51±0.23 94.73±0.35 100
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Results: 0.1% - 10% Training
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Results: Ablation Study

Datasets
Cora DBLP-ACM

0.1% 1% 20% 60% 0.1% 1% 20% 60%

ErNN 84.46 90.67 91.43 92.78 88.05 95.68 98.20 98.22
ErGAN-D 79.87 85.14 91.27 92.97 0 93.30 97.16 98.21
ErGAN-P 85.18 90.76 91.42 93.03 92.67 95.96 98.21 98.23
ErGAN 87.45 91.07 91.54 93.03 96.89 96.93 98.22 98.23

Datasets
DBLP-Scholar NCVoter

0.1% 1% 20% 60% 0.1% 1% 20% 60%

ErNN 82.76 83.17 86.71 87.73 99.39 100 100 100
ErGAN-D 0 78.85 83.43 88.29 0 99.58 100 100
ErGAN-P 83.43 85.34 86.55 88.32 99.39 99.79 100 100
ErGAN 84.23 85.85 86.86 88.32 99.45 100 100 100
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Conclusion

We have proposed a novel method, called ErGAN, to solve the ER
classification problem with very limited labeled instances.

ErGAN incorporates the diversity of instances into sampling, prior
to training the models. ErGAN consists of a label generator G to
generate pseudo labels for unlabeled instances, and a discriminator D
to distinguish instances with pseudo labels from instances with real
labels.

This method can be extended with word embedding for handling
attribute values, leading to an enhanced method, called
ErGAN+WE.

Our experimental results show that the performance of our methods
beats all the baselines.
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Thank You!

Q & A

Email: Jingyu.shao@anu.edu.au
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