Actively Learning Blocking Schemes For Entity Resolution

Introduction

- Entity resolution refers to the process of identifying records which represent the same real-world entity from one or more datasets.
- Blocking is an important part of entity resolution. It aims to improve the time efficiency of entity resolution by grouping potentially matched records into the same block. Limitations of existing approaches:
- 1. Supervised blocking scheme learning approaches require a large number of labels, but it is an expensive task to obtain labels for entity resolution;
- Existing unsupervised blocking scheme learning approaches, generate training sets based on the similarity of record pairs, instead of their true labels, thus the blocking quality can not be guaranteed.

Given a human oracle ζ , and an error rate $\varepsilon \in [0, 1]$, the *active blocking problem* is to learn a blocking scheme s for a set of blocks B_s within the budget label cost of budget(ζ):

Learning Approach Overview

Active Scheme Learning Framework

We develop two complementary and integrated strategies to adaptively learn the blocking scheme.

Active Branching

An active branching (AB avoids enumerating all possible blocking schemes and reduce the number of candidate blocking schemes by deciding whether conjunction or disjunction of two candidate schemes will be used in terms of two lemmas.

Experimental Results

Characteristics of datasets

Dataset	# Attribute	# Records	Class Imbalance Ratio
Cora	4	1,295	1:49
DBLP-Scholar	4	2,616 / 64,263	1:31,440
DBLP-ACM	4	2,616 / 2,294	1:1,117
NCVR	18	267,716 / 278,262	1:2,692

Baseline Methods:

- Fisher: Mayank Kejriwal & Daniel P. Miranker, ICDM 2013
- Tblo: Ivan P. Fellegi & Alan B. Sunter, 1969
- RSL: uses random sampling technique instead of active sampling

Comparison on blocking quality by different blocking approaches over four real-world datasets using the measures: (a) RR, (b) PC, (c) PQ, and (d) FM

The number of record pairs generated

	TBIo	Fisher	ASL	RSL
Cora	2,945	67,290	29,306	17,974
DBLP-Scholar	6,163	1,039,242	3,328	3,328
DBLP-ACM	25,279	69,037	3,043	17,446
NCVR	932,239	7,902,910	634,121	634,121

Label cost

	ASL						DCI
							NJL
	Error Rate	0.8	0.6	0.4	0.2	0.1	
	Cora	600	400	450	550	500	8,000

DBLP-Scholar	500	350	250	300	250	10,000+
DBLP-ACM	300	200	150	200	300	2,500
NCVR	300	350	250	150	200	10,000+

Jingyu Shao and Qing Wang

Australian National Jniversity

Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2000, Australia {Jingyu.shao ,Qing.wang}@anu.edu.au

ANU College of **Engineering & Computer Science**